

UNIVERSITY OF LATEX Department of Computer Science

Homework 1

CS 101: Introduction to Computer Science

Professor Jane Doe

John Smith - 123456789

Due Date September 30, 2025

Question 1

Preliminaries:

We consider a binary classification task with two classes: positive (pos) and negative (neg). The following quantities are defined:

- N_{pos} : Number of positive instances,
- N_{neg} : Number of negative instances,
- $r = \frac{N_{\text{neg}}}{N_{\text{pos}}}$: Class imbalance ratio (negatives to positives).

A classification outcome can be summarized via the confusion matrix:

		Predicted	
		Positive	Negative
Actual	Positive	TP	FN
	Negative	FP	TN

We define the following evaluation metrics:

• Recall (True Positive Rate)

$$\text{Recall} = \text{TPR} = \frac{\text{TP}}{\text{TP} + \text{FN}} = \frac{\text{TP}}{N_{\text{pos}}}$$

• Precision

$$Precision = \frac{TP}{TP + FP}.$$

• F1 Score

$$F_1 = 2 \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}.$$

• False Positive Rate

$$FPR = \frac{FP}{FP + TN} = \frac{FP}{N_{neg}}.$$

For different thresholds on the classifier score, we define the following plots:

- **PR Curve:** Precision vs. Recall.
- ROC Curve: TPR vs. FPR.

Solution

Let us fix the TPR = α and FPR = β as they are the properties of the classifier. These two metrics are *normalized* by the class sizes N_{pos} and N_{neg} , respectively:

$$\alpha = \frac{\mathrm{TP}}{N_{\mathrm{pos}}}, \qquad \beta = \frac{\mathrm{FP}}{N_{\mathrm{neg}}}.$$

Because they measure *rates* of correct or incorrect classification within each class, α and β do not explicitly depend on the ratio r. Consequently, for a chosen threshold (i.e. a chosen point on the ROC curve), α and β can remain rather constant even as we vary the class imbalance ratio $r = \frac{N_{\text{neg}}}{N_{\text{pos}}}$.

Parametrizing Confusion Matrix Entries:

Assume $N_{\text{neg}} = r N_{\text{pos}}$. Then the confusion matrix would be:

		Predicted	
		Positive	Negative
Actual	Positive	$\alpha N_{\rm pos}$	$(1-\alpha) N_{\rm pos}$
	Negative	$\beta r N_{ m pos}$	$(1-\beta) r N_{\rm pos}$

Using this, we derive the following for Precision, Recall, and F1 Score in terms of α , β , and r:

Precision:

$$Precision = \frac{TP}{TP + FP} = \frac{\alpha N_{pos}}{\alpha N_{pos} + \beta (r N_{pos})} = \frac{\alpha}{\alpha + \beta r}$$

Recall (TPR):

Recall =
$$\alpha$$
 (since $\alpha = \frac{\text{TP}}{N_{\text{pos}}}$).

F1 Score:

$$F_1 = 2 \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} = 2 \frac{\left(\frac{\alpha}{\alpha + \beta r}\right)\alpha}{\left(\frac{\alpha}{\alpha + \beta r}\right) + \alpha} = \frac{2\alpha}{2\alpha + \beta r}$$

Sensitivity of PR Metrics (Precision, F1) to Imbalance

- **Precision** = $\frac{\alpha}{\alpha + \beta r}$: As *r* grows large (i.e. many more negatives than positives), the term βr can dominate the denominator unless β is driven extremely close to zero. Thus, even if β is small, the large product βr makes Precision plummet.
- F1 Score: Similarly, the F1 Score depends on r in the denominator. As r increases, the denominator grows, which reduces the F_1 score.

Hence, PR-based metrics explicitly reflect how the minority (positive) class is being detected relative to the potentially huge negative class. Small β can still yield large absolute FP, which greatly impacts Precision and thus reduces F_1 .

ROC Curve: Insensitivity to r The ROC curve plots:

$$(FPR, TPR) = (\beta, \alpha).$$

Neither α nor β is multiplied by r. Thus for the same α and β , the ROC curve does not change as r varies. Even if r becomes very large, the FPR remains the same β . Consequently, one can have a deceptively high Area Under the ROC Curve (AUC) while still missing the minority class in absolute terms. This insensitivity arises because FPR is normalized by N_{neg} , so it remains "locally small" even if N_{neg} itself is huge.

To summarize:

- PR curve and F1 score are sensitive to class imbalance. The denominators of these metrics depend on the absolute number of false positives, which scales with N_{neg} . As $r = \frac{N_{\text{neg}}}{N_{\text{pos}}}$ increases, Precision and F1 score can drop significantly even if the FPR remains constant. Thus, these metrics are directly affected by class imbalance.
- ROC curve is relatively insensitive to class imbalance. The ROC curve plots $\text{TPR} = \frac{\text{TP}}{N_{\text{pos}}}$ against $\text{FPR} = \frac{\text{FP}}{N_{\text{neg}}}$. For fixed α and β , changing r does not alter the ROC point (β, α) . Therefore, a model can appear to perform well on the ROC curve even under high class imbalance, potentially masking poor Precision and low F1 scores.

References

 K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, 2015. arXiv: 1512.03385 [cs.CV]. [Online]. Available: https://arxiv.org/abs/ 1512.03385.